
A Formal Algebra Implementation for Distributed Image
and Video Stream Processing

Mohamed A. Helala, Ken Q. Pu, Faisal Z. Qureshi
Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada

{Mohamed.Helala, Ken.Pu, Faisal.Qureshi}@uoit.ca

ABSTRACT
We are interested in building scalable computer vision systems for
distributed processing of big visual data. We apply data stream-
ing concepts, namely stream algebra operators, which have been
proven effective in the database literature. The operators collec-
tively form an algebra over data streams. The algebra has well
defined semantics. It naturally describes online computer vision
algorithms and their feedback control and tuning algorithms.

In this work, we present the first implementation of such alge-
bra at large scale. Our implementation provides a high level pro-
gramming interface for constructing and executing vision workflow
graphs while hiding the data transfer and concurrency details. It
also allows feedback control and dynamic reconfiguration of vision
algorithms. A case study is discussed showing a streaming work-
flow for online lane and road boundary detection and describing
the flexibility and effectiveness of the algebra for building complex
distributed applications.

Keywords
stream algebra; workflow graphs; programming frameworks; dis-
tributed vision processing

1. INTRODUCTION
The recent advances in our ability to store, compute, share and

consume data introduced what is often referred to as the big data
era. This brought several challenges in many computing areas to
develop scalable algorithms and frameworks capable of processing
big data. The computer vision area is of no exception due to the
continuous growth of applications generating vast volumes of vi-
sual data. Examples of such applications include satellite imagery,
video surveillance, and online photo and video sharing websites
(e.g Flickr1). As these applications usually produce a stream of
data, stream processing becomes an important research direction
for handling the growth of data. This direction was also moti-
vated by the ability to express many computer vision algorithms
as streaming online methods. For example, several works have
been proposed for streaming hierarchical video segmentation [20],

1Flickr: https://www.flickr.com/ (last accessed on 1 May 2016).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDSC ’16 September 12–15, 2016, Paris, France
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

human body segmentation from video stream [10], photo stream
alignment [16], and inference of storylines from web photo streams [21,
14]. These methods are formulated as pipelines (or workflows)
that process image or video streams, which we refer to as Vision
Streams. The pipeline concept is borrowed from the database lit-
erature where it was found useful in scaling up algorithms, how-
ever, the methods lack a formal definition of pipelines. This lim-
its the ability to utilize and integrate these algorithms into larger
systems. This problem has been solved in databases using stream
algebras [4, 5, 8, 7].

A stream algebra is a formal language for mathematically defin-
ing workflow graphs. It defines a set of abstract and concurrent
operators that take data streams as their operands to produce out-
put streams. The operators have formal semantics to declare and
construct streaming workflows as mathematical expressions. This
formal definition provides the advantage of building general meth-
ods for optimizing workflow performance, implementing feedback
control and enabling dynamic reconfiguration of operators.

The database stream algebras are only applied to structured data
such as text, and cannot describe processing of vision streams that
have an unstructured content. A recent work by Helala et al. [12,
11] proposed a stream algebra for describing computer vision work-
flows. The algebra provided a set of formal operators for both
stream processing and flow control. Although this algebra is only
theoretically defined, it was shown usefully in describing several
online vision methods [18, 20, 17, 6, 14]. In this paper, we present
the first implementation of this algebra. The implementation de-
fines a programming framework for building distributed workflow
graphs for computer vision systems using the algebraic operators
of [12, 11]. We discuss the architecture of the framework and
the programming interface. The framework provides several ad-
vantages over current approaches such as feedback control and dy-
namic reconfiguration of operators at runtime. We present a case
study on online lane and road boundary detection from traffic video
streams. The results show the running time statistics gathered by
our framework at runtime with and without using feedback control
and dynamic reconfiguration. Section 2 provides the relevant work
and Section 3 provides a summary of the algebra in [12, 11]. Next,
Section 4 presents the algebra implementation and Section 5 dis-
cusses the case study and results. Finally, Section 6 concludes the
paper.

2. RELATED WORK
Stream algebra. There has been a large interest in the database

community for developing formal algebras for data stream process-
ing. For example, the work of Demers et al. [8] developed a stream
algebra as a declarative language for querying event streams. Chko-
drov et al. [7] also developed a stream algebra that maps the rela-
tional algebra operators into streaming versions. Broy et al. [4]
related stream algebras to the calculus of flownomials and basic

10.475/123_4

network algebra. They developed a set of algebraic operators for
constructing workflow graphs from stream processing functions.
Carlson and Lisper [5] presented an algebra for event detection with
a set of algebraic operators for manipulating event streams.

Previous systems and frameworks. Several frameworks have
been developed for distributed processing of data streams. For ex-
ample, GStreamer [9] implements multimedia processing pipelines.
Storm [19] allows the construction of distributed workflow graphs.
Hive [1] constructs distributed vision systems by connecting mod-
ules through a plug-in interface. These frameworks, however lacks
a formal description of stream processing and the benefits of having
a stream algebra.

3. STREAM ALGEBRA
We address workflow graphs expressed using the formal stream

algebra of [12]. This algebra consists of three main components: a
common notation for expressing workflows, a set of data process-
ing and flow control operators, and the formal semantics used to
write workflow expressions. This section gives an overview of the
algebra operators and how we can use them to express processing
pipelines and fork-join graphs.

Algebra presented in [12] defines a data stream as an infinite
sequence of data tuples. Functions λx → s and← s can be used
to write to and read from a data stream, respectively. The set S is a
the set of all streams and a stream operator is a function h : Sm →
Sn : S1

in, . . . , S
m
in → S1

out, . . . , S
n
out that maps n input streams to

m output streams.

3.1 Notation
The following constructs are used by [12] to define operators:

• Shared State: a shared state is defined as state u. This in-
dicates that the shared state u is accessed by the following
loops.

• Atomicity: we define a set of statements executing as an
atomic operation using { statements }.

• Concurrency: an infinite loop is defined as loop : body_
of_ loop. The loop applies the body logic iteratively on input
stream tuples. The loop runs in its own thread. If an operator
defines several concurrent loops, they all share the defined
states. loopj designate the j-th loop.

• Stream I/O: the function x ← s reads a tuple from stream s
into x, and the function e→ s writes a tuple e to stream s.

• Attribute Access: we use x.y to access attribute y from com-
posite variable x.

A stream operator is a mapping function that can have zero or
more parameters. The parameters can be assigned values or sim-
ple functions. In this paper, we also attach to each operator, the
attribute opid which defines a unique identifier for each operator.
Stream operators are the fundamental building blocks for workflow
graphs. A workflow graphG = (V,E) is a Directed Acyclic Graph
(DAG) with vertices V representing operators and edges E rep-
resenting the direction of data communication. We are interested
in two parallel processing workflow patterns: pipeline graphs, and
fork-join graphs. For these graphs, we classify the formal operators
defined by [12] into pipelined operators and fork-join operators.

3.2 Pipeline Graphs
The pipeline operators are simple first-order operators that can

be used to construct pipeline workflow graphs.
The Source operator has no input stream and writes to one output

stream. It is parametrized by an initial shared state u0 : U and a
generator function h : U → U × Y .

SOURCE(u0, h) : ∅ → S 〈Y 〉
state u = u0

loop : u, y = h(u)

y → Sout

The Map operator synchronously reads from k input streams,
performs a user-defined mapping function f : X × P → Y on
input tuples, and writes the computed value to an output stream.
The mapping function takes the incoming tuple of type X and a
set of function parameters of type P . The operator is parametrized
by a list of functions f : LIST 〈X × P → Y 〉 and an initial vector
of parameters p0. The initial function is by default at index zero.
The input tuple may also contain a commands section that records
extra information such as the pairs (opid, function-index) and
(opid, parameters). This information can reconfigure the operator
to switch to a new function that uses the supplied parameters. Two
functions are defined to access this information, fi : Z ×X → Z
and fp : Z×X → P . fi takes opid and incoming tuple as inputs
and retrieves a new function index if exists and -1 otherwise. fp
takes the same inputs and returns the function parameters vector if
exists and nil otherwise.

MAP(f ,p0) : S 〈X〉 × . . .S 〈Xk〉 → S 〈Y 〉
state i = 0, p = p0

loop : x =← Sin

if j = fi(opid, x), j 6= −1 then i = j

if z = fp(opid, x), z 6= nil then p = z

f [i](x,p)→ Sout

The Reduce keeps track of an internal shared state u : U and is
parametrized by a list of mapping functions g : LIST 〈U ×X × P
→ U × Y 〉, an initial vector of parameters q0, and an initial state
u0.

REDUCE(u0,g,q0) : S 〈X〉 → S 〈Y 〉
state i = 0, u = u0, q = q0

loop : x =← Sin

if j = fi(opid, x), j 6= −1 then i = j

if z = fp(opid, x), z 6= nil then q = z

u, y = g[i](u, x,q)

y → Sout

The Ground operator destroys the incoming stream.
GROUND : S→ ∅

loop : ← Sin

A pipeline graph is constructed from n first-order operators or
stages as shown in Figure 1a. Data tuples enter the pipeline sequen-
tially and are processed concurrently by operators. Each operator
receives a data tuple, process it, and submits results to output.

3.3 Fork and Join Graphs
The stream algebra provides several operators for flow control

using fork and join operators. The input and output streams can
be synchronized or asynchronized. If asynchronized, the input and
output streams are decoupled and can have different data rates.

3.3.1 Fork Operators
Copy synchronously reads and duplicates every input tuple to

n outgoing streams. It is parameterized by the number of output
streams n.

COPY(n) : S→ Sn

loop : x← Sin

x→ Si
out for all i ≤ n

SOURCE // MAP // MAP // REDUCE // MAP // GROUND

(a)

MAP // REDUCE

��
// COPY //

@@

��

REDUCE // MAP // MERGE //

MAP // REDUCE

??

(b)

MAP // LEFTMULT // MAP // REDUCE // CUT //

oo

MAP

��
SOURCE

OO

REDUCE

OO

GROUND

(c)

Figure 1: Different examples of workflow graphs. (a) A pipeline
graph. (b) A fork-join graph. (c) The pipeline graph in (a) with
a feedback control loop.

Latch receives a single input stream and has two output streams.
The operator reads from the incoming stream, synchronously writes
to S1

out, and asynchronously writes to S2
out. If input is slower

than the asynchronous output, data tuples will be duplicated, and
if faster, the asynchronous output will sample the input and looses
some tuples.

LATCH : S→ S2 defined as:

loop : x← Sin

{u = x
x→ S1

out}
loop : {u→ S2

out}

Cut follows the same logic of Latch, however the operator makes
sure that the incoming tuples are written only once to the asyn-
chronous output stream. nil is used for the extra writes when the
output stream has a faster data rate than the input stream.

CUT() : S→ S2

state u = nil
loop : x← Sin

{u = x ;x→ S2
out}

loop : {y = u ;u = nil}
y → S1

out

Scatter synchronously receives an input stream and generates a
list of output streams. The operator is parameterized by two func-
tions, f : X → LIST 〈Y 〉 and p : Y → N. f is a generator
function that computes output values and p is a partition function
that maps each output value y to the p(y)-th output stream.

f : X → LIST 〈Y 〉 , p : Y → N
SCATTER(f, p) : S 〈X〉 → LIST 〈S 〈X〉〉

let Sout = EMPTY-LIST 〈S 〈X〉〉
loop : y = f(← Sin)

yi → Sout[p(yi)] for all yi ∈ y

3.3.2 Join Operators

Mult has k incoming streams Sk
in, and one output stream Sout.

The operator reads one value at a time from each incoming stream,
forms a vector (x1, ..., xk), and synchronously writes this vector to
the outgoing stream. MULT() : Sk → S

loop :

 ← S1
in

...
← Sk

in

→ Sout

LeftMult restricts Mult to have only two incoming streams S1
in

and S2
in and one output stream. It then applies a latch on the second

stream S2
in. So, the data rate of the output stream is dependent on

S1
in and independent of S2

in.
LEFTMULT : S2 → S

S1, S2 = LATCH(S2
in) ; GROUND(S2)

loop :

[
← S1

in

← S1

]
→ Sout

Merge operator fuses a set of input streams into one output stream.
Given a set of n incoming streams of type X , a buffer of size n is
created to have one element per stream. Each stream is then as-
signed a processing loop to read into the corresponding buffer ele-
ment only if it is empty. A selection function is defined by user to
pick the next output element from the buffer and free its location
for next incoming elements. Several selection functions can be de-
fined. Here, we present the function f : X → (Y,�) that selects
the minimum element in the buffer for output.

f : X → (Y,�)

MERGE(f,�) : LIST 〈S 〈X〉〉 → S 〈X〉

MERGE(f) : Sin 7→ Sout

State : B where |B| = |Sin|.
for each Sin = Sin[i]:

loop : {if B[i] == nil then B[i]← Sin}
end for
loop : if nil 6∈ B then

i∗ = argmin�{f(B[i])}
{B[i∗]→ Sout;B[i∗] = nil}

end if
Figure 1b shows an example of a fork-join graph. The first op-

erator is the fork operator that copies the input stream into three
output streams. Each output stream is connected to a processing
branch that contains a set of operators. Finally all branches are
joined together using the Merge operator.

4. ALGEBRA IMPLEMENTATION
Our algebra implementation provides a simple framework for

defining distributed computer vision applications. It is implemented
in Go language, which is chosen for its scalability and concurrency
features. For example, A stream in the algebra is equivalent to a
channel in Go with the read x ← s and write x → s functions
defined.

4.1 Framework
The framework provides the previous set of abstract operators

and allows an easy way for composing them and building general
workflow graphs. The operators themself are reusable components
which can be plugged into different graphs. The architecture of our
framework contains four layers:

• Programming Interface. This interface allows program-
mers to build operators given a set of user defined functions
and parameters. A user can define a workflow graph by
chaining the operators together using composition.

• Operators Graph. This is a DAG with nodes representing
operators and edges representing data transfer channels. The
graph is built in the background while a user is composing
operators together.

• Execution Interface. The execution interface is responsible
for executing the graph and performing various performance
optimizations. This interface also monitors and tracks the
latency and throughput of a workflow graph.

• Data Transport. This layer provides an automatic handling
of data transfer and communication using Go language chan-
nels. Network transfers can be done using network chan-
nels2, which allows a distributed implementation on a cluster
of machines. We follow the one-port communication model
developed by [3, 2]. This model assumes that a single send
or receive communication can be performed at anytime on a
given stream. However, communications can be performed
in parallel on different streams. We enforce this model on the
execution platform. So, there exists only a single communi-
cation at any time on a certain link, but parallel communi-
cations can be performed using different links. Notice that
in the distributed mode, channels handles concurrency con-
trol and consistency by performing blocking read and write
to streams.

The first step to construct a computer vision workflow using our
framework is to build an operator graph by linking data processing
and flow control operators. Consider for example, the pipeline in
figure 1a. Given three lists of user defined functions f1, f2, and f3
for the mapping operators with parameters p1, p2, and p3 , a list
g1 with parameters q1 and state u1 for the Reduce operator, and
a generator function h with initial state u0 for the Source operator.
We can write this pipeline using the following Go language code,

g := NewGraph("pipeline")
g.Source(u0,h).Map(f1,p1).Map(f2,p2)

.Reduce(u1,g1,q1).Map(f3,p3).Ground()
g.Execute()

The code defines the graph g, then we use the dot operator to
compose the graph using the algebra operators. The dot operator is
helpful when the number of output and input streams of two con-
secutive operators match. It simply forwards the output streams of
the current operator to the input streams of the next operator. The
pipeline starts with the Source operator which submits image tuples
to subsequent processing operators until we reach Ground. We also
can attach extra command information to the data tuple. A Map op-
erator may represent a computer vision task such as foreground seg-
mentation or optical flow. Each Map or Reduce operator receives
a list of functions that defines different algorithms performing the
same task. The ability to pass different functions allows us to do dy-
namic reconfiguration by switching between functions at runtime.
Every function may also receive extra parameters which we can
attach to the command section of the incoming message. So, we
not only can change the function but we also can modify its behav-
ior using new parameters. Several graphs can also be defined and
linked together using fork and join operators. This is helpful when
running different visual processing graphs reading from the same
data source. In this case, a Copy operator may be used to copy the
source stream to the processing graphs. Multiple data sources may
be also used in the same graph. The Execute() function runs the
pipeline in a distributed concurrent fashion. When network chan-
nels are used, the operators can run on different machines inside a

2libchan: https://github.com/docker/libchan (last accessed on 2
May 2016).

computing cluster. This allows scaling an application from running
on single multi-core computer to multiple machines.

The fork-join graphs cannot be fully composed using the dot op-
erator as we did with pipelines. For example, the number of out-
put streams of a fork operator may not match the number of input
streams of subsequent operators that may belong to different paral-
lel branches. To handle this problem, our framework provides two
features: 1) we can assign a unique name for each operator to later
reference it; 2) the framework provides the LinkIn and LinkOut
functions for linking operators. Both functions receive two param-
eters: a target operator name and a variable-size list of names for
other operators. LinkIn connects the output channels of a set of
operators with the input channels of a target join operator. It cre-
ates an input list by sequentially finding the free input channels
of the target operator. An output list is then constructed from the
given operators in the variable-size list by selecting the first free
output channel from each operator. The output list has the same
order and length of the given variable-size list. Finally, the corre-
sponding channels from the input and output are linked together.
LinkOut behaves similarly but with fork operators. The follow-
ing code provide an example of using LinkIn and LinkOutwith
the fork-join graph in figure 1b,

g := NewGraph("fork-join")
g.Map(f1,p1"m1").Reduce(u1,g1,q1,"r1")
g.Reduce(u2,g2,q2,"r2").Map(f2,p2,"m2")
g.Map(f3,p3,"m3").Reduce(u3,g3,q3,"r3")
g.Copy(3, "cp")
g.Merge(f, "mrg")
g.LinkOut("cp", "m1", "r2", "m3")
g.LinkIn("mrg", "r1", "m2", "r3")

The code again starts with creating a graph object, then we create
the three parallel branches in figure 1b. Each branch is composed
using the dot operator and a unique name is given to the first and
last algebra operators. Next, we create the fork and join opera-
tors and assign them unique names. Finally, the LinkOut and
LinkIn functions are used to connect branches to the fork and
join operators.

4.2 Feedback Control and Dynamic Reconfig-
uration

The stream algebra of [12] has the important advantage of nat-
urally describing feedback control as shown by [11]. Figure 1c
presents an example of adding a feedback loop to control the in-
termediate Map and Reduce operators in the pipeline of Figure 1a.
The feedback loop is asynchronous and contains Cut, Reduce, and
LeftMult operators. The Cut operator forwards the incoming stream
to the next operator in the pipeline, and asynchronously sample this
stream to create the feedback stream. The feedback stream is then
given as input to a Reduce operator that outputs a stream of com-
mands. These commands are fedback to the asynchronous input
of the LeftMult operator, which creates an output stream of vec-
tors containing data and commands. This stream is forwarded to
the controlled operators and if commands exist, they are parsed to
change behavior as required. The changes may switch the Map
and/or Reduce operators to use a different function or supply new
parameter values. This allows us to perform dynamic reconfigura-
tion at runtime and react to data changes. We can write this pipeline
using the following Go language code,

g := NewGraph("feedback")
g.Source(u0,h).Map(f1,p1,"m1"))
g.LeftMult("lm").Map(f2,p2,"m2")

.Reduce(u2,g2,q2).Cut("ct")
g.Map(f3,p3,"m3")).Ground()
g.Reduce(u4,g4,q4,"r4"))
g.LinkOut("ct", "m3", "r4")
g.LinkIn("lm", "m1", "r4")
g.Execute()

The code creates the same pipeline as in the previous section but
with the addition of the feedback loop operators. Notice that we
create four branches and connect them using the Cut and LeftMult
operators.

4.3 Functions, Views and Statistics
Our framework provides OpenCV support through the Go-OpenCV

bindings3. This allows access to a wide range of stat-of-the-art
computer vision algorithms when writing the mapping and reduc-
ing functions. These functions can attach the algorithm output
to the outgoing message for latter use by subsequent operators.
We also created special mapping operators for viewing images and
plotting data. A Viewer operator is built as a GUI window to dis-
play images. The mapping function in this case retrieves image and
data from the incoming message, performs the necessary drawing
operations, and returns a new image for display. The incoming
messages are then forwarded to output. Dynamic plots can be also
created by the Plot operator which utilizes the Gnuplot library4 to
create 2D and 3D plotting. Figure 2b shows four different views for
our case study workflow that performs online road-boundary detec-
tion. Figure 3 shows dynamic plots for the average runtime of each
operator in the top branch of our case study workflow in figure 2a.

Our framework accumulates running time statistics for each op-
erator in a workflow graph. The statistics include the running aver-
age and standard deviation for the computation and communication
times spent by every operator. This is performed by recording for
every message, the entering and exiting times, and attaching them
to the message. When this message reaches a Ground operator,
the running times are retrieved for every operator and its statis-
tics are updated. This allows distributed calculation of statistics in
large workflows containing several branches and Ground operators.
Notice that our framework requires no synchronization between
Grounds as it assigns each operator, the Ground synchronized with
that operator. This assignment is performed before executing the
workflow graph. So, when an operator stores running time statis-
tics into a message, it also records the name of the target Ground
that will process these statistics. Each Ground then retrieves the
statistics record associated with its unique name.

5. CASE STUDY
In this section, we express the online road-boundary detection al-

gorithm of [13] in the proposed stream algebra. We refer the reader
to [12] for the description of other state-of-the-art vision pipelines.
The algorithm receives an input video stream V = {Vi|i = 0, 1, 2...}.
Then, it applies edge detection on each frame Vi ∈ V by extract-
ing N superpixels from each Vi and applying polygon approxima-
tion. The resulted edges are incrementally added to a hierarchi-
cal clustering tree by applying an online algorithm that maintains
clustering over a temporal window of interval ∆t. The algorithm
generates a sequence of updated clustering trees H = {Hi|i =
0, 1, 2, ...}. For each tree Hi; the algorithm statistically ranks the
clusters based on the number of edges and variance. Clusters with

3Go-OpenCV: https://github.com/lazywei/go-opencv (last ac-
cessed on 2 May 2016).
4Gnuplot: http://www.gnuplot.info/ (last accessed on 2 May 2016).

ranks larger than a threshold T are then selected. This generates
a ranked clusters stream C = {Ci|i = 0, 1, 2, ...}, where each
Ci ∈ C is a list of top ranked clusters from Hi ∈ H , at time i. For
every list Ci, each cluster Ci,j ∈ Ci is mapped to its mean line,
and generate the line stream L = {Li|i = 0, 1, 2...}. The method
then performs a Cartesian product of each set Li ∈ L by itself and
eliminates pairs with similar elements. This generates a pair-wise
stream P = {Pi|i = 0, 1, 2, ...}. After that, the approach applies
perspective filtering on every Pi ∈ P to remove line pairs that do
not have their vanishing points heading upward in the image. This
generates the filtered stream of line pairs Q.

After generating the pair-wise stream Q, the algorithm ranks ev-
ery pair in Qi based on the road activity. This is performed by
taking the input stream V and applying background subtraction to
detect moving objects. The centroids of these objects are recorded
over a temporal window of the same interval ∆t used by online
hierarchical clustering. Then, the method attaches with every pair-
wise list Qi ∈ Q the recent list of detected centroids and gen-
erate a stream U = {Ui|i = 0, 1, 2, ...}. Next, activity ranking
is applied on U to construct the ranked pair-wise stream J . Fi-
nally, the algorithm outputs the dominant road-boundary stream
B = {Bi|i = 0, 1, 2, ...}, where Bi = arg maxx∈Ji

rank(x)
represents the top-ranked pair from every pair-wise list Ji ∈ J .

5.1 Description Using Algebra
Now we describe this vision pipeline using the algebra (Fig-

ure 2a). The data types defined by the algorithm are,

Frame : 2DImage; Video : S 〈Frame〉 ; Point : R2

Edge : R6; Cluster : R4 × Edge;
RCluster : Cluster× R
Pair : Edge× Edge; RPair : Pair× R
Hierarchy : TREE 〈Cluster〉
Params : LIST 〈Parameter〉

where a Frame is a single 2D image, a Video is a stream of
frames, a Point is a 2D vector, and an Edge is a straight line
segment (x1, x2, y1, y2, ρ, φ), where (ρ, φ) represents the edge in
polar coordinates. A Cluster is represented in sufficient statis-
tics (φ̂, ρ̂, n, t, smax), where,

φ̂ = (
∑n

i=0 φi,
∑n

i=0 φ
2
i) ρ̂ = (

∑n
i=0 ρi,

∑n
i=0 ρ

2
i),

n is the number of edges in the cluster, t is the cluster’s last up-
date time, and smax is the line segment that encloses the projection
of all cluster edges on its mean line. We define RCluster as
(c, α), where c : Cluster and α is c’s statistical rank. A Pair
is a pair of edge segments. RPair is defined as (p, β), where
p : Pair and β is p’s activity rank. A Hierarchy is a tree of
clusters. Finally, Params is a list of parameters.

We start by copying the incoming video stream V ∈ Video into
two streams V ′ and V 1 using a COPY operator,

V ′, V 1 , COPY(2)(V) (1)

We then apply a CUT operator on V ′ to obtain the streams V 2
and V 3,

V 2, V 3 , CUT()(V ′) (2)

Note that the three streams V ′, V1, and V2 are all copies of the
original stream V with the same flow rate, however, V3 is a sam-
pled version of V ′ with a decoupled flow rate. We now process
V2, and return later to discuss the use of streams V1 and V3. We
apply edge detection on every frame in V2 using the functions list
f1 : LIST 〈Frame→ LIST 〈Edge〉〉. These functions implement

MAP
E

// VIEW
E
// REDUCE

H
// MAP

F
// MAP

C

��
MAP

O

��

MAP

Q

��

MAP
Poo MAP

Loo

CUT

V3

88V2

OO

REDUCE
A
// LEFTMULT

U
// MAP

J
// MAP

B

��
COPY

V ′

OO

V1

// VIEW
V1

// LEFTMULT

Y

��
SOURCE

V

OO

GROUND VIEW
Yoo

(a)

(b)

Figure 2: The online road-boundary detection algorithm of [13]
described in the stream algebra. (a) The workflow graph with
arrows showing the flow direction of streams. Letters on ar-
rows represent stream names. Dashed lines indicate decoupled
streams. V is the input video stream, and Y is the output video
stream that shows the estimated dominant road boundary. (b)
Displaying windows generated from four View operators show-
ing the V1 stream, detected edges in stream E, foreground ob-
jects in stream A, and detected road boundary in stream Y .

Sobel and Canny edge detectors. A list of parameters p1 are de-
fined with two elements for the threshold parameters of the two
detectors. f1 and p1 are used with a Map operator to define the
stream E : S 〈LIST 〈Edge〉〉,

E , MAP(f1,p1)(V2) ◦ VIEW(d1) (3)

The ◦ operator is a composition operator that takes the output
stream from the right operand and feeds it as an input stream to the
left operand. Notice that we use the View operator to display the
output edges using the function d1 : X → Image (see Figure 2b).
We then define the function,

g1 : Hierarchy× LIST 〈Edge〉 × Params
→ Hierarchy× LIST 〈Cluster〉

g1(u, x, p) = { u.add(x); //add edges x to u
y = u.last-touched(); //get last added clusters.
return(u, y) }

(a)

(b)

Figure 3: Dynamic plots for a set of operators in our case study
workflow graph. (a) A low runtime profile with feedback con-
trol to adjust the threshold parameters of edge detection and
output an average number of 200 edges. (b) A high runtime
profile without feedback control.

which keeps updating a given clustering tree u by adding new
edges. Then, a list of all clusters touched by the added edges are
returned as the output y. We add this function to the list g1 and de-
fine the parameters vector q1 which contains for example, the tree
height, number of children per node, etc. This function is used with
a Reduce operator to generate the streamH : S 〈LIST 〈Cluster〉〉,

H , REDUCE(Empty-Tree,g1,q1)(E). (4)

Given the H stream, we apply a ranking function f2 : LIST
〈Cluster〉 → LIST 〈RCluster〉 to statistically rank clusters
based on variance and number of samples. This function is added to
list f2 with parameters p2 for use with a Map operator to generate
the ranked clusters stream F : S 〈LIST 〈RCluster〉〉,

F , MAP(f2,p2)(H). (5)

We then apply a threshold function f3 : LIST 〈RCluster〉 →
LIST 〈RCluster〉 on every element in F to choose clusters with
ranks larger than a threshold T . This function is added to list f3
with empty parameters p3 to generate the stream C : S 〈LIST
〈RCluster〉〉,

C , MAP(f3,p3)(F). (6)

The streamC is converted to a line stream by applying a function
f4 : LIST 〈RCluster〉 → LIST 〈Edge〉. This function maps
every cluster Ci,j ∈ Ci into its mean line. The function is added
to list f4 with empty parameters p4 for use with a Map operator to
construct the line stream L : S 〈LIST 〈Edge〉〉,

L , MAP(f4,p4)(C). (7)

Now, we apply a Cartesian product function f5 : LIST 〈Edge〉
→ LIST 〈Pair〉 on every list Li ∈ L by itself and remove pairs
with similar elements. The function is added to list f5 with empty
p5 for use with a Map operator to construct the pair-wise stream
P : S 〈LIST 〈Pair〉〉,

P , MAP(f5,p5)(L). (8)

After that, we define a filtering function f6 : LIST 〈Pair〉 →
LIST 〈Pair〉 that applies perspective filtering on every pair Pi,j ∈
Pi. This function returns a list that only contains pairs with van-
ishing points heading upward in the image. We add this function to
list f6 with empty p6 for use with a Map operator to construct the
filtered pair-wise stream Q : S 〈LIST 〈Pair〉〉,

Q , MAP(f6,p6)(P). (9)

Now, we need to perform activity ranking on every pairQi ∈ Q.
In order to define scene activity, we go back and use the V3 stream.
Remember that, the V3 stream is a sampled version of the video
stream V ′, which is itself a copy of the input video stream V . We
apply background subtraction [15] on every frame in V3 to get a
set of foreground regions. We then output the centroids of these
regions. This is performed using the function f7 : Frame →
LIST 〈Point〉 added to list f7 with empty p3, which together with
a Map operator construct the centroids streamO : S 〈LIST 〈Point〉〉,

O , MAP(f7,p7)(V3). (10)

We record the extracted centroids over a temporal window with
interval4t. So, we define a function
g2 : LIST 〈Point〉×LIST 〈Point〉×Params→ LIST 〈Point〉×
LIST 〈Point〉

g2(u, x, p) = { for all z ∈ u
if (now()− arrival-time(z) ≥ p.4t) then
u = u	 z //remove z from u

u = u⊕ x.v //append points x.v to u
return(u, u) }

This function is added to a list g2 with parameters vector q2 that
contains only the4t parameter. The function is used with a Reduce
operator to generate the activity stream A : S 〈LIST 〈 Point〉〉,

A , REDUCE(Empty-List,g2,q2)(O). (11)

Now that we have the activity stream A, it is synchronized with
the filtered pairwise stream Q using a LeftMult operator. This op-
erator latches on A, and generates a stream U : S 〈LIST 〈Pair〉
× LIST 〈Point〉〉,

U , LEFTMULT()(Q,A). (12)

We then apply a ranking function f8 : LIST 〈Pair〉 × LIST
〈Point〉 → LIST 〈RPair〉 that ranks every line pair using its at-
tached centroids, and generates a list of ranked pairs. The function
is added to list f8 with empty parameters p8 for use with a Map op-
erator to build the the ranked pair-wise stream J : S 〈LIST 〈RPair〉〉,

J , MAP(f8,p8)(U). (13)

The algorithm then applies the function f9 = λx : arg maxy∈x
rActivity(y) on every element of stream J . This function returns the

line pair with the maximum activity rank. We add this function to
list f9 with empty p9 for use with a Map operator to construct the
dominant road-boundary stream B : S 〈RPair〉,

B , MAP(f9,p9)(J). (14)

We synchronize the B stream with the V1 video stream coming
from the View operator that displays the source stream (see Fig-
ure 2b). Remember that V1 is a copy of the input video stream.
This synchronization is performed using a LeftMult operator to
construct the output stream Y : Frame× RPair,

Y , LEFTMULT()(V1, B). (15)

Afterwords, we apply the expression
GROUND() ◦ VIEW(d3)(Y), first to view the estimated dominant
road-boundary on every frame using the drawing function d3 :
X → Image, then to release the stream resources.

5.2 Implementation
After describing our case study in the stream algebra, we eas-

ily implement it using our programming framework. It is a simple
one-to-one mapping. The following Go language code implements
the studied workflow graph of Figure 2a,

g := NewGraph("mygraph")
g.Source(h,p0).Copy(2, "cp")
g.Cut("ct")
g.Map(f1,p1,"m1s").View(d1).Reduce(u1,g1,q1)

.Map(f2,p2).Map(f3,p3).Map(f4,p4)

.Map(f5,p5) .Map(f6,p6,"m1e")
g.Map(f7,p7,"m2s") .Reduce(u2,g2,q2,"r2e")
g.LeftMult("lm3").Map(f8,p8)

.Map(f9,p9, "m3e")
g.View(d2, "v4")
g.LeftMult("lm5").View(d3).Ground()
g.LinkOut("cp","ct","v4")
g.LinkOut("ct","m1s","m2s")
g.LinkIn("lm3","m1e","r2e")
g.LinkIn("lm5","v4","m3e")

Where u1 and u2 define the Empty-Tree and Empty-List
initial states respectively. As before, we start by creating a work-
flow graph, then we add the first branch beginning with the Source
operator. Next, we define the Cut operator with the name "ct".
Later, the edge detection and clustering branch is defined. Notice
that we give unique names to branch start and end operators to ref-
erence them later in the code. We also define the foreground seg-
mentation branch that contains a Map followed by Reduce. The
code then follows by defining the activity ranking branch start-
ing with the LeftMult "lm3" and ending with the Map "m3e".
The last branch then starts by LeftMult "lm5", views the output,
and grounds the stream. Later, we use the LinkOut and LinkIn
functions to connect branches using the defined fork and join oper-
ators.

5.3 Discussions
The case study presented here shows that it is relatively straight-

forward to describe complex, scalable workflow graphs using our
programming framework. One interesting feature is the ability to
insert the Viewer operator at different locations to display interme-
diate processing results. Although here we chain the Viewer oper-
ator into the pipeline which may induce an overhead in the overall
latency. We can insert a Cut-Viewer-Ground branch at any graph
edge to sample the data stream without affecting performance. This
is used in cases where the display function has large overhead.

One can also use feedback control in our case study to monitor

the output of one or more streaming operators and refine their fu-
ture behavior. Figure 3 shows the benefits of using an asynchronous
feedback control loop. The figure shows the average runtime for
the source operator and all other operators in the top branch of Fig-
ure 2a with and without using the following feedback loop that con-
trols the number of output edges from the edge detection algorithm,

V2
// LEFTMULT // MAP

E
// CUT //

oo

E

REDUCE

OO

This feedback loop asynchronously samples the stream of edges
E and controls the edge detection Map operator using a Reduce op-
erator. Reduce monitors the number of output edges n and stores
a user desired number of edges k (set to 200 in experiments), the
most recent number of edges nr and the current value of the edge
detection threshold parameter T . When Reduce receives the cur-
rent output list of edges, it sets nr = n and compares nr with k.
If nr = k, we leave T unchanged. If nr > k, we increase the
threshold parameter T = T + ∆T by a small step ∆T to reduce
future number of edges. If nr < k, we decrease the parameter
T = T − ∆T to increase future number of edges. The adjusted
parameter T are then fedback by attaching it to the next input to
the Map operator using the LeftMult operator. The Map operator
then updates the edge detection parameter. As all operators after
edge detection depends on the number of generated edges, having
k output edges on average, keeps a low runtime profile in figure 3a.
If we did not use feedback control, we may encounter a runtime
profile similar to the one in Figure 3b, in case of images containing
large set of edges.

This simple example of using feedback control shows the large
range of problems that can be described using our framework. Ex-
amples of such problems include adaptive learning, performance
monitoring, parameter tuning, real-time debugging, and bottleneck
identification and prevention. Multi-view streams of a given scene
can also be joined using a Mult operator and forwarded to a Reduce
operator for keeping track of temporal relations. In addition one
can use parallel processing patterns such as Scatter-ListMap-Merge
for scaling up an expensive computational task. Here, ListMap
executes a list of Map operators in parallel. All these use cases
suggests the importance of our programming framework in imple-
menting scalable real world applications.

6. CONCLUSIONS
We present a programming framework for building scalable com-

puter vision systems and distributed processing of image and video
streams. The framework is the first implementation of the stream
algebra proposed by [12, 11]. It is implemented in Go program-
ming language and exploits its concurrency and scalability features.
The framework is demonstrated on an online road boundary de-
tection system, where it has proved its effectiveness in describing
and implementing complex computer vision streaming workflows.
We also support feedback control and dynamic reconfiguration of
streaming operators, and show how these features can tune opera-
tors to maintain a desired runtime profile. In the future, we want to
evaluate our programming framework on larger and more complex
computer vision systems and distributed environments.

7. REFERENCES
[1] A. Afrah, G. Miller, D. Parks, M. Finke, and S. Fels. Hive: A

distributed system for vision processing. In IEEE ICDSC,
pages 1–9, September 2008.

[2] P. B. Bhat, C. Raghavendra, and V. K. Prasanna. Efficient
collective communication in distributed heterogeneous
systems. Journal of Parallel and Distributed Computing,
63(3):251 – 263, 2003.

[3] P. B. Bhat, C. S. Raghavendra, and V. K. Prasanna. Efficient
collective communication in distributed heterogeneous
systems. In 19th IEEE International Conference on
Distributed Computing Systems (ICDCS), pages 15–24, May
1999.

[4] M. Broy and G. Stefanescu. The algebra of stream
processing functions. Theoretical Computer Science,
258(1-2):99 – 129, 2001.

[5] J. Carlson and B. Lisper. An event detection algebra for
reactive systems. In Proceedings of the 4th ACM
International Conference on Embedded Software, pages
147–154, 2004.

[6] D. Chau, J. Badie, F. Bremond, and M. Thonnat. Online
tracking parameter adaptation based on evaluation. In IEEE
International Conference on AVSS, pages 189–194, Aug
2013.

[7] G. Chkodrov, P. Ringseth, T. Tarnavski, A. Shen, R. Barga,
and J. Goldstein. Implementation of stream algebra over
class instances, Google patents, jan 2013.

[8] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. A general algebra and implementation for
monitoring event streams. Technical report, Cornell
University, 2005.

[9] GStreamer. http://gstreamer.freedesktop.org. Accessed:
2016-05-2.

[10] N. Harbi and Y. Gotoh. Spatio-temporal human body
segmentation from video stream. In Computer Analysis of
Images and Patterns, volume 8047, pages 78–85. Springer,
2013.

[11] M. A. Helala, K. Q. Pu, and F. Z. Qureshi. 2nd Workshop on
User-Centered Computer Vision (UCCV) in conjunction with
ACCV 2014, chapter Towards Efficient Feedback Control in
Streaming Computer Vision Pipelines, pages 314–329.
November 2014.

[12] M. A. Helala, K. Q. Pu, and F. Z. Qureshi. A stream algebra
for computer vision pipelines. In IEEE CVPR Workshops,
June 2014.

[13] M. A. Helala, F. Z. Qureshi, and K. Q. Pu. Automatic parsing
of lane and road boundaries in challenging traffic scenes.
Journal of Electronic Imaging, 24(5):053020, 2015.

[14] G. Kim and E. Xing. Jointly aligning and segmenting
multiple web photo streams for the inference of collective
photo storylines. In CVPR, pages 620–627, 2013.

[15] K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis.
Background modeling and subtraction by codebook
construction. In ICIP, volume 5, pages 3061–3064, Oct
2004.

[16] C. Loy, T. Hospedales, T. Xiang, and S. Gong. Stream-based
joint exploration-exploitation active learning. In CVPR,
pages 1560–1567, 2012.

[17] C. Lu, J. Shi, and J. Jia. Online robust dictionary learning. In
IEEE CVPR, pages 415–422, 2013.

[18] M. S. Ryoo. Human activity prediction: Early recognition of
ongoing activities from streaming videos. In ICCV, pages
1036–1043, Barcelona, Spain, 2011.

[19] Twitter’s Storm. http://storm.incubator.apache.org. Accessed:
2016-05-2.

[20] C. Xuand, C. Xiong, and J. Corso. Streaming hierarchical
video segmentation. In ECCV, volume VI, pages 626–639,
2012.

[21] J. Yang, J. Luo, J. Yu, and T. Huang. Photo stream alignment
and summarization for collaborative photo collection and
sharing. IEEE Trans. on Multimedia, 14(6):1642–1651,
2012.

http://gstreamer.freedesktop.org
http://storm.incubator.apache.org

